
Page 1 of 11: Exp. 1 & 2

Bangladesh University of Engineering & Technology

Department of Electrical & Electronic Engineering
EEE 212: Numerical Technique Laboratory

Experiment 1 & 2: Introduction to MATLAB

Objectives:

 Familiarize with the MATLAB environment.
 Learn basic syntax and script writing.
 Explore built-in functions and help features.
 Perform basic computations and plotting.

Introduction:

MATLAB works with three types of windows on your computer screen. These are the Command
window, the Figure window and the Editor window. The Figure window only pops up whenever you
plot something. The Editor window is used for writing and editing MATLAB programs (called M-files)
and can be invoked in Windows from the pull-down menu after selecting File | New | M-file.

 Create a folder of your group name in C drive.
 Open MATLAB 6.5. In "current directory'' select your folder.

 From the "file" menu start a new m-file. Always write your program in m-file & save it. The
file/function/variable name must start with a letter and cannot contain space. The name can
be a mix of letters, digits, and underscores. (e.g., vector_A, but not vector-A (since "-" is a
reserved char). must not be longer than 31 characters.

 You can also write any command or program in "command window".
 Function “clear all” removes all variables, globals, functions and MEX links. Write clear

all at the beginning of your m-file.
 Write "clc" in command window to clear the command window, "clg" to clear graphics

window.
 MATLAB is case sensitive. e.g., NAME, Name, name are 3 distinct variables.
 Write "help function_name" in command window after the ">>" sign to see the description

of the function. For example, type "help sin" to know about sin functions in MATLAB. You
can also use help in the menubar.

 Explore MATLAB’s lookfor and help capability by trying the following:

>> lookfor keywords
>> help
>> help plot
>> help ops
>> help arith

Page 2 of 11: Exp. 1 & 2

Special Characters:

There are a number of special reserved characters used in MATLAB for various purposes. Some of these
are used as arithmetic operators, namely, +, ‐, *, / and \. While others perform a multitude of
purposes:
 % -- anything after % (and until end of line) is treated as comments, e.g.,

>> x = 1:2:9; % x = [1 3 5 7 9];

 ; -- delimits statements; suppresses screen output, e.g.,
>> x = 1:2:9; y = 2:10; % two statements on the same line

 ... -- statement continuation, e.g.,
>> x = [1 3 5 ...

 7 9]; % x = [1 3 5 7 9] splitted into 2 lines

 : -- range delimiter, e.g.,
>> x = [1:2:9]; % x=[1,3,5,7,9]

 '-- matrix transposition, e.g.,
>> x = [1:2:9]'; % x changed from row vector to column vector

if the vector/matrix is complex, “ ' ” results in complex conjugation and matrix
transposition.

 , -- command delimiter, e.g.,
>> x = [1:2:9], y = [1:9] % two statements on the same line

 : -- precede an arithmetic operator to perform an elemental operation, instead of matrix
operation, e.g.,
>> x = 3:3:9

x =

3 6 9

>> y = 3*ones(3,1)'

y =

3 3 3

>> z = x./y

z =

1 2 3

 * -- "wild card", e.g.,
>> clear A* % clears all variables that start with A.

Note that many of these characters have multiple functionalities (function overloading) depending
on the context, e.g., "*" is used for scalar multiply, matrix multiply and "wild card" as seen above.

Arithmetic Operations & Built in functions:

Example 1. Find 𝑦 ൌ 𝑒𝑥𝑝 ሺ5ଶ/3 𝑝𝑖ሻ

Page 3 of 11: Exp. 1 & 2

Solution: In m-file write the following command

clear all;
a=5^2;
b=3*pi;
y=exp(a/b);
disp(y)

 Save the file and “run” the program from “Debug” menu. Type “y” in command window and

press “enter”.
 Remove “;” from all the lines and run the program.
 Write each line in command window and press “enter” after each line.
 Variable names are assigned to expressions by using equal sign. For example, a=5^2; here “a”

is the variable that store the value of 5^2 or 25.
 See the list of built in functions from “help” menu. Some built-in functions are abs() cos() sin()

exp() log() real() sqrt() floor() ceil()

Exercise 1. Find the value of 𝑦 ൌ lnሺsinhሺexpሺ543 6 ∗ 𝑝𝑖⁄ ሻሻሻ

Matrices:

 Write A = [1 2 3; 4 5 6; 7 6 3] in command window and press “enter”. It is a 33 matrix.
 Write A(1,3) in command window to view the 3rd element in 1st row. The first parameter

within bracket denotes row and the second parameter denotes column.
 Z = zeros(2,3) creates a 23 matrix of zeros. Similarly ones(), eye() create special types of

matrices.
 Write A=0:0.3:3 in command window. 0 is the starting value, 3 is the end value and 0.3 is

the step value.
 Write “help size”, “help prod” and “help length” in command window.

Exercise 2. Find the size, and length of following matrices A = [1 2 3; 4 5 6;7 6 54; 65 23 45]
B=7:1:13.5

 Write A(1:2,2:3) in command window. Write A([1 2],[2 3]). These are different ways to

select a submatrix of a matrix.
 A(1,1) = sin(5); assign a new value to an element of A.

Matrix Operations:

 All arithmetic operations can be performed on matrices.
 Operations can be performed on each element or on whole matrix. For example,

>> x = 3:3:9

>> y = 3*ones(3,1)'

Page 4 of 11: Exp. 1 & 2

>> z =x./y

 Some operations are performed on square matrices only.

 + ‐ * / ^ (algebraic/matrix definitions)
.+ .‐ .* ./ .^ (element by element operation) Additionally,

"'" performs matrix transposition; when applied to a complex matrix, it includes elemental conjugations
followed by a matrix transposition \ and .\ perform matrix and elemental left division.

Exercise 3. A=[2 3; 4 5]; B=[3 4; 6 7]; Find A+B, A*B, A.*B, A/B, A\B, A.^2, A./B

Graphics:

MATLAB can produce 2 and 3 dimensional plots. MATLAB is an interactive environment in which you
can program as well as visualize your computations. It includes a set of high-level graphical functions
for:

 Line plots (plot, plot3, polar)
 Bar graphs (bar, barh, bar3, bar3h, hist, rose, pie, pie3)
 Surface plots (surf, surfc)
 Mesh plots (mesh, meshc, meshgrid)
 Contour plots (contour, contourc, contourf)
 Animation (moviein, movie)

Example 2.
x=0:0.1:pi;
y=cos(x);
plot(y);
plot(x,cos(x),'r');
plot(x,y,x,y.^2);

Example 3.
x=0:0.1:pi;
y=cos(x);
plot(y);
hold on
plot(x,cos(x),'r');

Page 5 of 11: Exp. 1 & 2

Example 4.
x=linspace(0,7);
y=exp(x);
subplot(2,1,1), plot(x,y);
subplot(2,1,2), semilogy(x,y);

Example 5.
x = magic(3);
bar(x);
grid

Exercise 4. Plot the following functions in the same window y1=sin x, y2=sin 2x, y3=sin 3x, y4=sin
4x where x varies from 0 to pi.

Loops & Conditionals:

MATLAB has the following flow control constructs:
 if statements
 switch statements
 for loops
 while loops
 break statements

0 5 10 15 20 25 30 35
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7
0

500

1000

0 1 2 3 4 5 6 7
100

102

1 2 3
0

1

2

3

4

5

6

7

8

9

Page 6 of 11: Exp. 1 & 2

The if, for, switch and while statements need to terminate with an end statement.

Example 6. (if statement)
x=‐3;
if x>0
 a=10;
elseif x<0
 a=11;
elseif x == 0
 a=12;
else
 a=14;
end

What is the value of ‘a’ after execution of the above code?

Example 7. (while loop)

x=‐10;
while x<0
 x=x+1;
end

What is the value of x after execution of the above loop?

Example 8. (for loop)
x=0;
for i=1:10
 x=x+1;
end

What is the value of x after execution of the above loop?

Defining matrices via the vector technique

Using the for loop in MATLAB is relatively expensive. It is much more efficient to perform the
same task using the vector method. For example, the following task

for j=1:n
 for i=1:m
 A(i,j) = B(i,j) + C(i,j);
 end
end

can be more compactly and efficiently represented (and computed) by the vector method as
follows:

A(1:m,1:n) = B(1:m,1:n) + C(1:m,1:n);

Page 7 of 11: Exp. 1 & 2

If the matrices are all of the same size (as is the case here), then the above can be more succinctly
written as

A = B + C;

For sufficiently large matrix operations, this latter method is vastly superior in performance.

Example 9. (break statement)

The break statement lets you exit early from a for or a while loop:

x=‐10;
while x<0
 x=x+2;
 if x == ‐2
 break;
 end
end

What is the value of x after execution of the above loop?

Relational Operators

Symbol Meaning
<= Less than equal
< Less than
>= Greater than equal
> Greater than
== Equal
˜ = Not equal

Logical Operators

Symbol Meaning
 & AND
| OR
˜ NOT

Defining functions:

 In MATLAB there is scope for user-defined functions.

Suggestion: Since MATLAB distinguishes one function from the next by their file names, name files
the same as function names to avoid confusion. Use only lowercase letter to be consistent with
MATLAB's convention.

 To define a function, start a new M-file. The first line of M-file should be

function variable_name=function_name(parameters);

Page 8 of 11: Exp. 1 & 2

variable_name is the name of variable whose value will be returned.
function_name is user defined according to the rules stated previously.

Example 10.
function y=cal_pow(x);
y=1+x^2;
end

 Save this function as cal_pow.
 Start another new M-file .This will be our main file.
 Write the following commands and run the file:

clear all;
x=0:1:3;
t=length(x);
for i=1:t
 val(i)=cal_pow(x(i));
end
plot(x,val);

Do the following:

Exercise 5. Write a program to compute the variance of an array x . The variance 𝜎 is defined to be:

𝜎 ൌ
1
𝑁
෍  

ே

௜ୀଵ

ሺ𝑥௜ െ �̅�ሻଶ

where �̅� is the average of the array x .
a) For x , use all the integers from 1 to 1000.
b) Create x by built in function rand.

Exercise 6. Define the matrices

A=[17 2 3 4; 5 6 7 8; 9 10 11 12; 13 14 15 16]
B=[2 3 4 5 ; 6 7 8 9 ; 10 11 12 13 ; 14 15 16 17]
C=[1 2 3 ; 4 5 6 ; 7 8 9]
y=[4 3 2 1]'

Note the transpose ' on the y-vector which makes y a column vector.
a) Compute AB and BA. Is matrix multiplication commutative?
b) Compute AC. Why do you get an error message?
c) Solve the following system of equations:

0 0.5 1 1.5 2 2.5 3
1

2

3

4

5

6

7

8

9

10

Page 9 of 11: Exp. 1 & 2

17𝑥ଵ ൅ 2𝑥ଶ ൅ 3𝑥ଷ ൅ 4𝑥ସ ൌ 4
5𝑥ଵ ൅ 6𝑥ଶ ൅ 7𝑥ଷ ൅ 8𝑥ସ ൌ 3
9𝑥ଵ ൅ 10𝑥ଶ ൅ 11𝑥ଷ ൅ 12𝑥ସ ൌ 2
13𝑥ଵ ൅ 14𝑥ଶ ൅ 15𝑥ଷ ൅ 16𝑥ସ ൌ 1

Exercise 7. Solve the following circuit to find i1, i2, and i3.

Ans: i1= 3 amp, i2= 2 amp, i3= 3 amp.

Exercise 9. An N-point Kaiser window is given by

𝑤ሺ𝑛ሻ ൌ
𝐼଴ ቆ𝛽 ൜1 െ ቂሺ𝑛 െ 𝛼ሻ

𝛼ൗ ቃ
ଶ
ൠ
ଵ/ଶ

ቇ

𝐼଴ሺ𝛽ሻ
,𝑛 ൌ 0, 1, … … . . .𝑁 െ 1

where 𝛼 ൌ ሺ𝑁 െ 1ሻ
2ൗ for linear phase FIR filter, 𝑁 is the filter length and 𝛽 is the Kaiser window

parameter. 𝑁 can be odd or even. 𝐼଴ሺሻ is the zero order modified Bessel function of the first kind, which
is defined by the following infinite series:

𝐼௢ሺ𝑥ሻ ൌ 1 ൅෍  

ஶ

௅ୀଵ

ቈ
ሺ𝑥/2ሻ௅

𝐿!
቉
ଶ

Recommended upper limit of series that is L୫ୟ୶ ൌ 32.

Page 10 of 11: Exp. 1 & 2

Empirical formulas for finding 𝑵 and 𝜷 : If the transition width (normalized) and stop band
attenuation are Δ𝜔 and 𝛿 respectively then

𝐴 ൌ െ20log ሺ𝛿ሻ

𝑁 ൌ 𝑓𝑙𝑜𝑜𝑟 ൬
𝐴 െ 8

2.285𝛥𝜔
൅ 1൰

Here 𝑁 should be of integer type. See what does built in MATLAB function 𝑓𝑙𝑜𝑜𝑟 do.

𝛽 ൌ ቐ
0.1102ሺ𝐴 െ 8.7ሻ,𝐴 ൐ 50
0.5842ሺ𝐴 െ 21ሻ଴.ସ ൅ 0.07886ሺ𝐴 െ 21ሻ, 21 ൑ 𝐴 ൑ 50
0.0,𝐴 ൏ 21

The impulse response, ℎ஽ሺ𝑛ሻ for low pass filter is given below:

ℎ஽ሺ𝑛ሻ ൌ

⎩
⎪
⎨

⎪
⎧

2𝑓௖

sin ቆቀ𝑛 െ 𝑁 െ 1
2 ቁ2𝜋𝑓௖ቇ

ቀ𝑛 െ 𝑁 െ 1
2 ቁ 2𝜋𝑓௖

, 𝑛 ്
𝑁 െ 1

2

2𝑓௖ , 𝑛 ൌ
𝑁 െ 1

2

Design a linear phase low pass FIR filter using the Kaiser window to satisfy the following amplitude
response specifications:

Sampling frequency, 𝐹௦ 1 kHz

Ideal cutoff frequency, 𝐹௖ 250 Hz

Transition width, Δ𝐹 50 Hz

Pass band ripple, 𝛿 0.001

a) Write M-file to plot impulse response ℎሺ𝑛ሻ ൌ ℎ஽ሺ𝑛ሻ ⋅ 𝑤ሺ𝑛ሻ vs. 𝑛 of the filter.

b) Plot magnitude (in dB) and phase response (in degrees) vs. analog frequency. To do this
necessary codes are given at the end of this sessional sheet.

N.B.

𝑓௖ ൌ
𝐹௖
𝐹௦

Δ𝜔 ൌ 2𝜋 ൈ Δ𝑓 ൌ 2𝜋 ൈ
Δ𝐹
 Fୱ

Follow the algorithm below to write the codes for Kaiser Window FIR low pass filter impulse
response:

Page 11 of 11: Exp. 1 & 2

1. Enter the inputs 𝐹௦,𝐹௖ ,Δ𝐹, 𝛿 and Lm.

2. Evaluate 𝑓௖ ,Δ𝜔,𝐴,𝑁,𝛽,𝛼 and 𝐼଴ሺ𝛽ሻ. Create a matlab subprogram to calculate 𝐼଴ሺ𝛽ሻ as
calculation of zero order modified Bessel function of the first kind will be needed several times.

3. For each value of 𝑛, evaluate

𝐼଴ሺ𝑥ሻ; 𝑥 ൌ 𝛽 ൜1 െ ቂሺ𝑛 െ 𝛼ሻ
𝛼ൗ ቃ

ଶ
ൠ
ଵ/ଶ

,𝑤ሺ𝑛ሻ and ℎ஽ሺ𝑛ሻ. Now calculate ℎሺ𝑛ሻ

4. Now make a plot ℎሺ𝑛ሻ.

%%%finding filter magnitude and phase response in frequency domain Page 11
of 11:Expt 1 & 2
NFFT=1024;
hfir=fft(hFIR,NFFT); %%%%% hFIR=calculated h(n) earlier
k=0:NFFT‐1;
%waxis=2*pi*1/NFFT.*k;
faxis=1/NFFT.*k;
magresdB=20*log10(abs(hfir));
subplot(312),plot(faxis(1:NFFT/2+1)*Fs,magresdB(1:NFFT/2+1))
grid on;
xlabel('Frequency (Hz)')
ylabel('Magnitude response (dB)')
subplot(313),plot(faxis(1:NFFT/2+1)*Fs,(unwrap(angle(hfir(1:NFFT/2+1))))*18
0/pi)
grid on;
xlabel('Frequency (Hz)')
ylabel('Phase response (degrees)')
%%%finding magnitude and phase response by freqz built in function
% figure
% freqz(hFIR,1);

Reference Books:

1. Mathews, J. H., & Fink, K. D. (2004). Numerical Methods using MATLAB (4th ed.). Upper
Saddle River, NJ: Pearson Prentice Hall.

2. Etter, D. M. (2005). Engineering Problem Solving with MATLAB (3rd ed.). Upper Saddle
River, NJ: Pearson Prentice Hall.

Revised by,

Md. Samrat

(April 2025)

Page 1 of 7: Exp. 3

Bangladesh University of Engineering & Technology

Department of Electrical & Electronic Engineering
EEE 212: Numerical Technique Laboratory

Experiment 3: Interpolation

Objectives:

 Understand interpolation theory and application.
 Implement polynomial interpolation.
 Analyze accuracy and limitations.

Introduction:
Forming a polynomial:

A polynomial, p(x) of degree n in MATLAB is stored as a row vector, p, of length n+1. The components
represent the coefficients of the polynomial and are given in the descending order of the power of x, that
is
p = [an an-1 a1 a0]
is interpreted as
p(x) = anxn+ an-1xn-1+ + a1x+a0

In MATLAB the following commands are used to evaluate a polynomial: polyval, poly, roots,
conv etc.

Exercise 1. Construct a polynomial such that C(x)= A(x)*B(x) where A(x)= 3x2+2x-4 and B(x)= 2x3-
2 , Also find the roots of A(x), B(x) and C(x).

Interpolation:

In the mathematical subfield of numerical analysis, interpolation is a method of constructing new data
points from a discrete set of known data points.

In engineering and science one often has a number of data points, as obtained by sampling or some
experiment, and tries to construct a function which closely fits those data points. This is called curve
fitting. Interpolation is a specific case of curve fitting, in which the function must go exactly through the
data points.

Definition:

Given a sequence of n distinct numbers 𝑥௞ called nodes and for each 𝑥௞ a second number 𝑦௞, we are
looking for a function 𝑓 so that

𝑓ሺ𝑥௞ሻ ൌ 𝑦௞ ,𝑘 ൌ 1, … ,𝑛

A pair 𝑥௞,𝑦௞ is called a data point and 𝑓 is called the interpolant for the data points.

Page 2 of 7: Exp. 3

For example, suppose we have a table like this, which gives some values of an unknown function 𝑓.
The data are given in the table:

Table 1

𝒙 𝒇ሺ𝒙ሻ
0 0
1 0.8415
2 0.9093
3 0.1411
4 -0.7568
5 -0.9589
6 -0.2794

The plot can be shown as:
.

What value does the function have at, say, x = 2.5? Interpolation answers questions like this.

Types of interpolation:

A. Linear interpolation

One of the simplest methods is linear interpolation. Consider the above example of determining 𝑓ሺ2.5ሻ
. We join the data points by linear interpolation and get the following plot:

Page 3 of 7: Exp. 3

Noe we can get 𝑓ሺ2.5ሻ . Since 2.5 is midway between 2 and 3, it is reasonable to take 𝑓ሺ2.5ሻ midway
between 𝑓ሺ2ሻ ൌ 0.9093 and 𝑓ሺ3ሻ ൌ 0.1411 , which yields 0.5252.

Generally, linear interpolation takes two data points, say (xa,ya) and (xb,yb), and the interpolant is given
by

𝑓ሺ𝑥ሻ ൌ
𝑥 െ 𝑥௕
𝑥௔ െ 𝑥௕

𝑦௔ െ
𝑥 െ 𝑥௔
𝑥௔ െ 𝑥௕

𝑦௕

This formula can be interpreted as a weighted mean.

Linear interpolation is quick and easy, but it is not very precise.

Exercise 2. Plot the curve corresponding to table1 using linear interpolation.

Exercise 3. y = sin(x); x = 0:10; x(i) = 0 : 0.25 :10; Construct the interpolant y and plot.

A. Polynomial interpolation

Polynomial interpolation is a generalization of linear interpolation. Note that the linear interpolant is a
linear function. We now replace this interpolant with a polynomial of a higher degree.

Consider again the problem given above. The following sixth-degree polynomial goes through all seven
points:

𝒇ሺ𝒙ሻ ൌ െ𝟎.𝟎𝟎𝟎𝟏𝟓𝟐𝟏𝒙𝟔 െ 𝟎.𝟎𝟎𝟑𝟏𝟑𝟎𝒙𝟓 ൅ 𝟎.𝟎𝟕𝟑𝟐𝟏𝒙𝟒 െ 𝟎.𝟑𝟓𝟕𝟕𝒙𝟑 ൅ 𝟎.𝟐𝟐𝟓𝟓𝒙𝟐 ൅ 𝟎.𝟗𝟎𝟑𝟖𝒙

Substituting x = 2.5, we find that f(2.5) = 0.5965.

Page 4 of 7: Exp. 3

Generally, if we have n data points, there is exactly one polynomial of degree n−1 going through all the
data points. The interpolation error is proportional to the distance between the data points to the power
n.

However, polynomial interpolation also has some disadvantages. Calculating the interpolating
polynomial is relatively very computationally expensive. Furthermore, polynomial interpolation may
not be so exact after all, especially at the endpoints.

a. Lagrange Polynomial:

The Lagrange interpolating polynomial is the polynomial

P(x)

of degree (n  1)

that

passes through the n points , , ..., , and is given by

where

Written explicitly,

When constructing interpolating polynomials, there is a tradeoff between having a better fit and having
a smooth well-behaved fitting function. The more data points that are used in the interpolation, the higher
the degree of the resulting polynomial, and therefore the greater oscillation it will exhibit between the
data points. Therefore, a high-degree interpolation may be a poor predictor of the function between
points, although the accuracy at the data points will be "perfect."

For points,

Note that the function, P(x) passes through the points , as can be seen for the case

Page 5 of 7: Exp. 3

Above figure shows Lagrange interpolation of the bell curve function 𝑓ሺ𝑥ሻ ൌ 𝑒ି௫

మ
 for three different

polynomial degrees: N = 5, 9, and 15. as N increases, the interpolation fits the central region better.
However, for N = 15, significant oscillations appear near the edges (Runge’s phenomenon).

Algorithm for the Lagrange Polynomial: To construct the Lagrange polynomial

of degree n, based on the n+1 points for . The Lagrange
coefficient polynomials for degree n are:

for .

So, for a given x and a set of (N+1) data pairs, (xi, fi), i= 0, 1, N:

1 Read N, x(0:N), f(0:N), x_val
2 sum ← 0
3 for i = 0 to N do
4 p ← 1
5 for j = 0 to N do
6 if j ≠ i then
7 p ← p * (x_val - x(j)) / (x(i) - x(j))
8 endif
9 endfor

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

-1

-0.5

0

0.5

1

1.5

2

2.5
Lagrange Interpolation for Bell Curve f(x) = e-x

2

Original Function e-x
2

Lagrange N=5
Points N=5
Lagrange N=9
Points N=9
Lagrange N=15
Points N=15

Page 6 of 7: Exp. 3

10 sum ← sum + p * f(i)
11 endfor
12 result ← sum
13 Write result

Exercise 4. Write a MATLAB program implementing Lagrange Polynomial.

Exercise 5. Construct a Lagrange interpolating polynomials for the data points given in table 1.

a. Newton polynomial:

To construct and evaluate the Newton polynomial of degree  n that passes through then  1 points
(xk , yk)  (xk , f (xk)) for k  0,1,……n :

This polynomial Pn(x) is said to be a Newton Polynomial with n centers x0, x1 to xn-1. It involves sums

of products of linear factors upto

 an(x-x0)(x-x1)(x-x2)… (x-xn-1)

Construction for n = 1.

Use the two points .

Algorithm Newton polynomial:

To construct and evaluate the Newton polynomial of degree  n that passes through the n  1 points
 (xk , yk)  (xk , f (xk)) , for k  0,1,………n :

where

So for a given set of (N+1) data pairs, (xk,yk), k= 0 to N

Page 7 of 7: Exp. 3

1 Read N, x(1:N+1), f(1:N+1)
2 for i = 1 to N+1 do
3 D(i,1) ← f(i)
4 endfor
5 for j = 2 to N+1 do
6 for k = j to N+1 do
7 D(k,j) ← (D(k,j-1) - D(k-1,j-1)) / (x(k) - x(k-j+1))
8 endfor
9 endfor

Exercise 6. Write a MATLAB Program implementing the algorithm of Newton polynomial.

Exercise 7. Construct a Newton interpolating polynomials for the data points given in table 1.

Note: There are some functions in MATLAB which perform interpolation of data in different ways
e.g. interp1, interp2 etc.

Revised by,

Md. Samrat

(April 2025)

 Page 1 of 6: Exp. 4

Bangladesh University of Engineering & Technology
Department of Electrical & Electronic Engineering

EEE 212: Numerical Technique Laboratory

Experiment 4: Curve Fitting

Objectives:

 Differentiate between interpolation and curve fitting.
 Apply least squares regression method for linear and polynomial fits..
 Transform nonlinear models into linear forms.

Introduction:

Data is often given for discrete values along a continuum. However we may require estimates at
points between the discrete values. Then we have to fit curves to such data to obtain intermediate
estimates. In addition, we may require a simplified version of a complicated function. One way to
do this is to compute values of the function at a number of discrete values along the range of
interest. Then a simpler function may be derived to fit these values. Both of these applications are
known as curve fitting.

There are two general approaches of curve fitting that are distinguished from each other on the
basis of the amount of error associated with the data. First, where the data exhibits a significant
degree of error, the strategy is to derive a single curve that represents the general trend of the data.
Because any individual data may be incorrect, we make no effort to intersect every point. Rather,
the curve is designed to follow the pattern of the points taken as a group. One approach of this
nature is called least squares regression.

Second, where the data is known to be very precise, the basic approach is to fit a curve that passes
directly through each of the points. The estimation of values between well known discrete points
from the fitted exact curve is called interpolation.

Figure 1: (a) Least squares linear regression (b) linear interpolation (c) curvilinear interpolation

Least squares Regression:

Where substantial error is associated with data, polynomial interpolation is inappropriate and may
yield unsatisfactory results when used to predict intermediate values. A more appropriate strategy
for such cases is to derive an approximating function that fits the shape or general trend of the
data without necessarily matching the individual points. Now some criterion must be devised to

 Page 2 of 6: Exp. 4

establish a basis for the fit. One way to do this is to derive a curve that minimizes the discrepancy
between the data points and the curve. A technique for accomplishing this objective is called least
squares regression, where the goal is to minimize the sum of the square errors between the data
points and the curve. Now depending on whether we want to fit a straight line or other higher
order polynomial, regression may be linear or polynomial. They are described below.

Linear regression:

The simplest example of least squares regression is fitting a straight line to a set of paired
observations: (x1, y1), (x2, y2), ……… ,(xn, yn). The mathematical expression for straight line is

𝑦𝑦𝑚𝑚 = 𝑎𝑎0 + 𝑎𝑎1𝑒𝑒

Where 𝑎𝑎0 and 𝑎𝑎1 are coefficients representing the intercept and slope and 𝑦𝑦𝑚𝑚 is the model value. If
𝑦𝑦0 is the observed value and e is the error or residual between the model and observation then

𝑒𝑒 = 𝑦𝑦0 − 𝑦𝑦𝑚𝑚 = 𝑦𝑦𝑖𝑖 − 𝑎𝑎0 − 𝑎𝑎1𝑒𝑒𝑖𝑖

Now we need some criteria such that the error 𝑒𝑒 is minimum and also we can arrive at a unique
solution (for this case a unique straight line). One such strategy is to minimize the sum of the
square errors. So sum of square errors

𝑆𝑆𝑟𝑟 = � 
𝑛𝑛

𝑖𝑖=1

𝑒𝑒𝑖𝑖2 = � 
𝑛𝑛

𝑖𝑖=1

�𝑦𝑦𝑖𝑖, observed − 𝑦𝑦𝑖𝑖, model �
2

= � 
𝑛𝑛

𝑖𝑖=1

(𝑦𝑦𝑖𝑖 − 𝑎𝑎0 − 𝑎𝑎1𝑒𝑒𝑖𝑖)2 … … … … … … … … … … (1)

To determine the values of 𝑎𝑎0 and 𝑎𝑎1, equation (1) is differentiated with respect to each coefficient.

∂𝑆𝑆𝑟𝑟
∂𝑎𝑎0

= −2� (𝑦𝑦𝑖𝑖 − 𝑎𝑎0 − 𝑎𝑎1𝑒𝑒𝑖𝑖)

∂𝑆𝑆𝑟𝑟
∂𝑎𝑎1

= −2� (𝑦𝑦𝑖𝑖 − 𝑎𝑎0 − 𝑎𝑎1𝑒𝑒𝑖𝑖)𝑒𝑒𝑖𝑖

Setting these derivatives equal to zero will result in a minimum Sr . If this is done, the equations can be
expressed as

0 = � 𝑦𝑦𝑖𝑖 −� 𝑎𝑎0 −� 𝑎𝑎1𝑒𝑒𝑖𝑖

0 = � 𝑦𝑦𝑖𝑖𝑒𝑒𝑖𝑖 −� 𝑎𝑎0𝑒𝑒𝑖𝑖 −� 𝑎𝑎1𝑒𝑒𝑖𝑖2

Now realizing that ∑𝑎𝑎0 = 𝑛𝑛𝑎𝑎0, we can express the above equations as a set of two simultaneous linear
equations with two unknowns 𝑎𝑎0 and 𝑎𝑎1.

𝑛𝑛𝑎𝑎0 + �� 𝑒𝑒𝑖𝑖� 𝑎𝑎1 = � 𝑦𝑦𝑖𝑖

�� 𝑒𝑒𝑖𝑖� 𝑎𝑎0 + �� 𝑒𝑒𝑖𝑖2� 𝑎𝑎1 = � 𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖

from where

 Page 3 of 6: Exp. 4

𝑎𝑎1 =
𝑛𝑛∑ 𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖 − ∑ 𝑒𝑒𝑖𝑖 ∑ 𝑦𝑦𝑖𝑖
𝑛𝑛 ∑ 𝑒𝑒𝑖𝑖2 − (∑ 𝑒𝑒𝑖𝑖)2

𝑎𝑎0 = 𝑦𝑦‾ − 𝑎𝑎1𝑒𝑒‾

Where 𝑦𝑦‾ and 𝑒𝑒‾ are the means of y and x respectively.

Algorithm for linear regression:
1. Initialize: sumx ← 0, sumy ← 0, sumxy ← 0, sumx2 ← 0
2. For i = 1 to n do
3. sumx ← sumx + x[i]
4. sumy ← sumy + y[i]
5. sumxy ← sumxy + x[i] * y[i]
6. sumx2 ← sumx2 + x[i]^2

End For
7. xm ← sumx / n
8. ym ← sumy / n
9. a₁ ← (n * sumxy - sumx * sumy) / (n * sumx2 - sumx^2)
10. a₀ ← ym - a₁ * xm

Exercise 1. Fit a straight line to the x and y values of table 1
Table 1

x y
1 0.5
2 2.5
3 2.0
4 4.0
5 3.5
6 6.0
7 5.5

Ans: a0=0.071142857, a1=0.8392857

Polynomial Regression:

In some cases, we have some engineering data that cannot be properly represented by a straight
line. We can fit a polynomial to these data using polynomial regression.

1 2 3 4 5 6 7
x

0

1

2

3

4

5

6

y

Least squares Regression

Observed Data

Fitted Line

 Page 4 of 6: Exp. 4

Figure 2: (a) Data that is ill-suited for linear least squares regression (b) indication that a parabola is
preferable

The least squares procedure can be readily extended to fit the data to a higher order polynomial.
For example, we want to fit a second order polynomial

𝑦𝑦𝑚𝑚 = 𝑎𝑎0 + 𝑎𝑎1𝑒𝑒 + 𝑎𝑎2𝑒𝑒2

For this case the sum of the squares of residuals is

𝑆𝑆𝑟𝑟 = � 
𝑛𝑛

𝑖𝑖=1

(𝑦𝑦𝑖𝑖 − 𝑎𝑎0 − 𝑎𝑎1𝑒𝑒𝑖𝑖 − 𝑎𝑎2𝑒𝑒𝑖𝑖2)2 … … … … … … … … … (2)

Taking derivative of equation (2) with respect to unknown coefficients 𝑎𝑎0, 𝑎𝑎1 and 𝑎𝑎2

∂𝑆𝑆𝑟𝑟
∂𝑎𝑎0

= −2� (𝑦𝑦𝑖𝑖 − 𝑎𝑎0 − 𝑎𝑎1𝑒𝑒𝑖𝑖 − 𝑎𝑎2𝑒𝑒𝑖𝑖2)

∂𝑆𝑆𝑟𝑟
∂𝑎𝑎1

= −2� 𝑒𝑒𝑖𝑖(𝑦𝑦𝑖𝑖 − 𝑎𝑎0 − 𝑎𝑎1𝑒𝑒𝑖𝑖 − 𝑎𝑎2𝑒𝑒𝑖𝑖2)

∂𝑆𝑆𝑟𝑟
∂𝑎𝑎2

= −2� 𝑒𝑒𝑖𝑖2(𝑦𝑦𝑖𝑖 − 𝑎𝑎0 − 𝑎𝑎1𝑒𝑒𝑖𝑖 − 𝑎𝑎2𝑒𝑒𝑖𝑖2)

These equations can be set equal to zero and rearranged to develop the following set of normal
equations:

𝑛𝑛𝑎𝑎0 + �� 𝑒𝑒𝑖𝑖� 𝑎𝑎1 + �� 𝑒𝑒𝑖𝑖2� 𝑎𝑎2 = � 𝑦𝑦𝑖𝑖

�� 𝑒𝑒𝑖𝑖� 𝑎𝑎0 + �� 𝑒𝑒𝑖𝑖2� 𝑎𝑎1 + �� 𝑒𝑒𝑖𝑖3� 𝑎𝑎2 = � 𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖

�� 𝑒𝑒𝑖𝑖2� 𝑎𝑎0 + �� 𝑒𝑒𝑖𝑖3� 𝑎𝑎1 + �� 𝑒𝑒𝑖𝑖4� 𝑎𝑎2 = � 𝑒𝑒𝑖𝑖2𝑦𝑦𝑖𝑖

Now 𝑎𝑎0, 𝑎𝑎1 and 𝑎𝑎2 can be calculated using matrix inversion.

 Page 5 of 6: Exp. 4

Exercise 2. Fit a second order polynomial to the data given in table 2

Table 2
x y
0 2.1
1 7.7
2 13.6
3 27.2
4 40.9
5 61.1

Ans: a0=2.47857, a1=2.35929, a2=1.86071

Linearization of Nonlinear Relationships:

Linear regression is a powerful technique for fitting a best line to data. However it is dependent on
the fact that the relationship between the dependent and independent variables should be linear.
This is always not the case. In those cases, we use polynomial regression. In some cases,
transformation can be used to express the data in a form that is compatible with linear regression.
One example is the exponential model

𝑦𝑦 = 𝑎𝑎1𝑒𝑒𝑏𝑏1𝑥𝑥 … … … … … … … … … (3)

Where 𝑎𝑎1 and 𝑏𝑏1 are constants.

Another example of a nonlinear model is the simple power equation

𝑦𝑦 = 𝑎𝑎2𝑒𝑒𝑏𝑏2 … … … … … … … … … (4)

Where 𝑎𝑎2 and 𝑏𝑏2 are constants.

Nonlinear regression techniques are available to fit these equations to experimental data directly.
However, a simpler alternative is to use mathematical manipulations to transform the equations
into linear forms. Then simple linear regression can be used to fit the equations to data.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x

0

10

20

30

40

50

60

70

y

Fitting y = a 0
 + a

1
 x + a

2
 x 2 to Data

Original Data

Quadratic Fit

 Page 6 of 6: Exp. 4

For example equation (3) can be linearized by taking its normal logarithm to yield

𝑓𝑓𝑛𝑛 𝑦𝑦 = 𝑓𝑓𝑛𝑛 𝑎𝑎1 +𝑏𝑏1𝑒𝑒

Thus a plot of 𝑓𝑓𝑛𝑛 𝑦𝑦 vs 𝑒𝑒 will yield a straight line with a slope of 𝑏𝑏1 and an intercept of 𝑓𝑓𝑛𝑛 𝑎𝑎1 Equation
(4) can be linearized by taking its base10 logarithm to give

𝑓𝑓𝑓𝑓𝑙𝑙 𝑦𝑦 = 𝑓𝑓𝑓𝑓𝑙𝑙 𝑎𝑎2 +𝑏𝑏2 𝑓𝑓𝑓𝑓𝑙𝑙 𝑒𝑒

Thus a plot of 𝑓𝑓𝑓𝑓𝑙𝑙 𝑦𝑦 vs 𝑓𝑓𝑓𝑓𝑙𝑙 𝑒𝑒 will yield a straight line with a slope of 𝑏𝑏2 and an intercept of 𝑓𝑓𝑓𝑓𝑙𝑙 𝑎𝑎2

Exercise 3. Fit the equation 𝑦𝑦 = 𝑎𝑎2𝑒𝑒𝑏𝑏2 to the data given in table 3

Table 3

x y
1 0.5
2 1.7
3 3.4
4 5.7
5 8.4

Ans: a2=0.5, b2=1.75

Hints: find logx and logy for all points. Using these converted points, using linear regression find
slope b2 and intercept loga2. Then find a2 and b2.

Reference Books:

1. Chapra, S. C., & Canale, R. P. (2015). Numerical Methods for Engineers (7th ed.). New York,
NY: McGraw-Hill Education.

Revised by,
Md. Samrat
(April 2025)

1 1.5 2 2.5 3 3.5 4 4.5 5
x

0

1

2

3

4

5

6

7

8

9

y

Fitting y = a 2
 x b

2 to Data

Original Data

Fitted Curve

 Page 1 of 6: Exp. 5

Bangladesh University of Engineering & Technology
Department of Electrical & Electronic Engineering

EEE 212: Numerical Technique Laboratory

Experiment 5: Solution of Simultaneous Linear Algebraic Equations

Objectives:

 Solve linear systems using multiple methods such as Gauss-Jordan elimination (with and
without pivoting).

 Address numerical stability issues.
 Implement iterative methods (Gauss-Seidel) to handle larger systems.
 Validate computed solutions by substitution into the original equations.

Introduction:

Concept of linear equations and their solution
A set of linear algebraic equations looks like this:

a11x1 + a12 x2 + ...a1N xN = b1

a21 x1 + a22 x2 + ...a2 N xN = b2 (1)

… … … …
aM 1 x1 + aM 2 x2 + ...aMN xN = bM

Here the N unknowns xj , j = 1, 2, . . .,N are related by M equations. The coefficients aij with i = 1, 2,
. . .,M and j = 1, 2, . . .,N are known numbers, as are the right-hand side quantities bi, I = 1, 2, . .
.,M.

Existence of solution
If N = M then there are as many equations as unknowns, and there is a good chance of solving for a
unique solution set of xj’s. Analytically, there can fail to be a unique solution if one or more of the
M equations is a linear combination of the others (This condition is called row degeneracy), or if
all equations contain certain variables only in exactly the same linear combination(This is called
column degeneracy). (For square matrices, a row degeneracy implies a column degeneracy, and
vice versa.) A set of equations that is degenerate is called singular.
Numerically, at least two additional things can go wrong:

1. While not exact linear combinations of each other, some of the equations may be so close to
linearly dependent that round off errors in the machine renders them linearly dependent at
some stage in the solution process. In this case your numerical procedure will fail, and it can
tell you that it has failed.

2. Accumulated round off errors in the solution process can swamp the true solution. This
problem particularly emerges if N is too large. The numerical procedure does not fail
algorithmically. However, it returns a set of x’s that are wrong, as can be discovered by direct
substitution back into the original equations. The closer a set of equations is to being singular,
the more likely this is to happen.

 Page 2 of 6: Exp. 5

Matrices
Equation (1) can be written in matrix form as

A · x = b (2)

Here the raised dot denotes matrix multiplication, A is the matrix of coefficients, x is the column
vector of unknowns and b is the right-hand side written as a column vector,

𝐀𝐀 = �

𝑎𝑎11 𝑎𝑎12 … 𝑎𝑎1𝑁𝑁
𝑎𝑎21 𝑎𝑎22 … 𝑎𝑎2𝑁𝑁
… … … …
𝑎𝑎𝑀𝑀1 𝑎𝑎𝑀𝑀2 … 𝑎𝑎𝑀𝑀𝑁𝑁

� 𝐱𝐱 = �

𝑒𝑒1
𝑒𝑒2
. .
𝑒𝑒𝑁𝑁

� 𝐛𝐛 = �

𝑏𝑏1
𝑏𝑏2
. .
𝑏𝑏𝑀𝑀

�

Finding Solution
There are so many ways to solve this set of equations. Below are some important methods.

1. Using the backslash and pseudo-inverse operator
In MATLAB, the easiest way to determine whether Ax = b has a solution, and to find such a
solution when it does, is to use the backslash operator. Exactly what A \ b returns is a bit
complicated to describe, but if there is a solution to A · x = b, then A \ b returns one.
Warnings: (1) A \ b returns a result in many cases when there is no solution to A · x = b. (2) A \ b
sometimes causes a warning to be issued, even when it returns a solution. This means that you
can't just use the backslash operator: you have to check that what it returns is a solution. (In any
case, it's just good common sense to check numerical computations as you do them.) In
MATLAB this can be done as follows:

Using backslash operator:

x = A\b;

You can also use the pseudo-inverse operator:

x=pinv(A)*b; % it is also guaranteed to solve Ax = b, if Ax = b has a
solution.

As with the backslash operator, you have to check the result.

2. Using Gauss-Jordan Elimination and Pivoting
To illustrate the method let us consider three equations with three unknowns:

a11x1 + a12 x2 + a13 x3 = a14 (A)
a21 x1 + a22 x2 + a23 x3 = a24 (B)
a31 x1 + a32 x2 + a33 x3 = a34 (C)

Here the quantities bi, i = 1, 2, . . .,M’s are replaced by aiN+1, where i=1,2, ….M for simplicity of
understanding the algorithm.
The First Step is to eliminate the first term from Equations (B) and (C). (Dividing (A) by a11 and
multiplying by a21 and subtracting from (B) eliminates x1 from (B) as shown below)

 Page 3 of 6: Exp. 5

�𝑎𝑎21 −
𝑎𝑎11
𝑎𝑎11

𝑎𝑎21� 𝑒𝑒1 + �𝑎𝑎22 −
𝑎𝑎12
𝑎𝑎11

𝑎𝑎21� 𝑒𝑒2 + �𝑎𝑎23 −
𝑎𝑎13
𝑎𝑎11

𝑎𝑎21� 𝑒𝑒3 = �𝑎𝑎24 −
𝑎𝑎14
𝑎𝑎11

𝑎𝑎21�

Let, 𝑎𝑎21
𝑎𝑎11

= 𝑘𝑘2, then

(𝑎𝑎21 − 𝑘𝑘2𝑎𝑎11)𝑒𝑒1 + (𝑎𝑎22 − 𝑘𝑘2𝑎𝑎12)𝑒𝑒2 + (𝑎𝑎23 − 𝑘𝑘2𝑎𝑎13)𝑒𝑒3 = (𝑎𝑎24 − 𝑘𝑘2𝑎𝑎14)

Similarly multiplying equation (A) by 𝑎𝑎31
𝑎𝑎11

= 𝑘𝑘3 and subtracting from (C), we get

(𝑎𝑎31 − 𝑘𝑘3𝑎𝑎11)𝑒𝑒1 + (𝑎𝑎32 − 𝑘𝑘3𝑎𝑎12)𝑒𝑒2 + (𝑎𝑎33 − 𝑘𝑘3𝑎𝑎13)𝑒𝑒3 = (𝑎𝑎34 − 𝑘𝑘3𝑎𝑎14)

Observe that (𝑎𝑎21 − 𝑘𝑘2𝑎𝑎11) and (𝑎𝑎31 − 𝑘𝑘3𝑎𝑎11) are both zero.

In the steps above it is assumed that a11 is not zero. This case will be considered later in
this experiment.

The above elimination procedure is called triangularization.

Algorithm for triangularizing n equations in n unknowns:
1 for i = 1 to n and j = 1 to (n +1) in steps of 1 do read aij endfor
2 for k = 1 to (n −1) in steps of 1 do
3 for i = (k + 1) to n in steps of 1 do
4 u ← aik / akk

5 for j = k to (n + 1) in steps of 1 do
6 aij ← aij − uakj endfor
 endfor
 endfor

The reduced equations are:

a11x1 + a12 x2 + a13 x3 = a14

 a22 x2 + a23 x3 = a24

 a32 x2 + a33 x3 = a34

The next step is to eliminate a32 from the third equation. This is done by multiplying second
equation by u = a32 / a22 and subtracting the resulting equation from the third. So, same algorithm can
be used.
Finally, the equations will take the form:

a11x1 + a12 x2 + a13 x3 = a14

a22 x2 + a23 x3 = a24

 a33 x3 = a34

 Page 4 of 6: Exp. 5

The above set of equations are said to be in triangular (Upper) form. From the above upper
triangular form of equations, the values of unknowns can be obtained by back substitution as

x3 = a34 / a33

x2 = (a24 − a23 x3) / a22

x2 = (a14 − a12 x2 − a13 x3) / a11

Algorithmically, the back substitution for n unknowns is shown below:
1 xn ← an(n+1) / ann

2 for i = (n −1) to 1 in step of -1 do
3 sum ← 0
4 for j = (i + 1) to n in steps of 1 do
5 sum ← sum + aij x j
 endfor
6 xi ← (ai (n+1) − sum) / aii

 endfor

Exercise 1. Given the simultaneous equations shown below (i) triangularize them (ii) use back
substitution to solve for x1 , x2 ,x3 .

2x1 + 3x2 + 5x3 = 23
3x1 + 4x2 + x3 = 14
6x1 + 7x2 + 2x3 = 26

For generalization, you will have to write a program for triangularizing n equations in n
unknowns with back substitution.

Pivoting
In the triangularization algorithm we have used,

u ← aik / akk

Here it is assumed that akk is not zero. If it happens to be zero or nearly zero, the algorithm will
lead to no results or meaningless results. If any of the akk is small it would be necessary to reorder
the equations. It is noted that the value of akk would be modified during the elimination process and
there is no way of predicting their values at the start of the procedure. The elements akk are called
pivot elements. In the elimination procedure the pivot should not be zero or a small number. In
fact for maximum precision the pivot element should be the largest in absolute value of all the
elements below it in its column, i.e. up as the maximum of all amk where, m ≥ k akk should be picked
So, during the Gauss elimination, amk elements should be searched and the equation with the
maximum value of amk should be interchanged with the current position. For example if during
elimination we have the following situation:

x1 + 2x2 + 3x3 = 4
 0.3x2 + 4x3 = 5

 Page 5 of 6: Exp. 5

 −8x2 + 3x3 = 6

As |−8| > 0.3, 2nd and 3rd equations should be interchanged to yield:

x1 + 2x2 + 3x3 = 4
 −8x2 + 3x3 = 6
 0.3x2 + 4x3 = 5

It should be noted that interchange of equations does not affect the solution.
The algorithm for picking the largest element as the pivot and interchanging the equations is
called pivotal condensation.

Algorithm for pivotal condensation:
1. max ← |aₖₖ|
2. p ← k
3. for m = (k + 1) to n in steps of 1 do
4. If (|aₘₖ| > max) then
5. max ← |aₘₖ|
6. p ← m
 Endif

Endfor
7. If p ≠ k then
8. For q = k to (n + 1) in steps of 1do
9. temp ← aₖq
10. aₖq ← aₚq
11. aₚq ← temp
 Endfor

Endif

Exercise 2. Modify the MATLAB program written in exercise 1 to include pivotal condensation.
Exercise 3. Try to solve the following systems of equations (i) Gauss-Jordan elimination (ii)
Gauss-Jordan elimination with pivoting

(A)

(C)

2x1 + 4x2 − 6x3 = −4
 x1 + 5x2 + 3x3 = 10
 x1 + 3x2 + 2x3 = 5

4x1 + 8x2 + 4x3 = 8
x1 + 5x2 + 4x3 − 3x4 = −4
x1 + 4x2 + 7x3 + 2x4 = 10

x1 + 3x2 − 2x4 = −4

(B)

 x1 + x2 + 6x3 = 7
−x1 + 2x2 + 9x3 = 2
 x1 − 2x2 + 3x3 = 10

3. Using Gauss-Seidel Iterative Method
There are several iterative methods for the solution of linear systems. One of the efficient iterative
methods is the Gauss-Seidel method.

 Page 6 of 6: Exp. 5

Let us consider the system of equations:

4x1 − x2 + x3 = 7
4x1 − 8x2 + x3 = −21
−2x1 + x2 + 5x3 = 15

The Gauss-Seidel iterative process is suggested by the following equations:

𝑒𝑒1𝑘𝑘+1 =
7 + 𝑒𝑒2𝑘𝑘 − 𝑒𝑒3𝑘𝑘

4

𝑒𝑒2𝑘𝑘+1 =
21 + 4𝑒𝑒1𝑘𝑘+1 + 𝑒𝑒3𝑘𝑘

8

𝑒𝑒3𝑘𝑘+1 =
15 + 2𝑒𝑒1𝑘𝑘+1 − 𝑒𝑒2𝑘𝑘+1

5

The very first iteration, that is 𝑒𝑒20, 𝑒𝑒30, … . 𝑒𝑒𝑛𝑛0 (for n equations) are set equal to zero and 𝑒𝑒11 is
calculated. The main point of Gauss-Seidel iterative process to observe is that always the latest
approximations for the values of variables are used in an iteration step.

Exercise 4. Solve the following equations using Gauss-Seidel iteration process:

(A) 8x1 − 3x2 = 10
−x1 + 4x2 = 6

5x1 − x2 + x3 = 10

(B) 4x − y = 15

x + 5 y = 9

 2x + 8 y − z = 11
(C) 2x1 + 8x2 − x3 = 11

−x1 + x2 + 4x3 = 3
 (D) 5x − y + z = 10

−x + y + 4z = 3

It is to be noted that in some cases the iteration diverges rather than it converges. Both the
divergence and convergence can occur even with the same set of equations but with the change in
the order. The sufficient condition for the Gauss-Seidel iteration to converge is stated below.
The Gauss-Seidel iteration for the solution will converge (if there is any solution) if the matrix A
(as defined previously) is strictly diagonally dominant matrix.
A matrix A of dimension N × N is said to be strictly diagonally dominant provided that

|𝑎𝑎𝑘𝑘𝑘𝑘| > � 
𝑁𝑁

𝑗𝑗=1
𝑗𝑗≠𝑘𝑘

�𝑎𝑎𝑘𝑘𝑗𝑗� for 𝑘𝑘 = 1,2, …𝑁𝑁

Revised by,
Md. Samrat
(April 2025)

 Page 2 of 5: Exp. 6

Bangladesh University of Engineering & Technology
Department of Electrical & Electronic Engineering

EEE 212: Numerical Technique Laboratory

Experiment 5: Numerical Differentiation

Objectives:

 Derive and implement forward, central, and high-order difference formulas.
 Analyze truncation errors and refine estimates using Richardson’s extrapolation.

Introduction:

We are familiar with the analytical method of finding the derivative of a function when the
functional relation between the dependent variable y and the independent variable x is known.
However, in practice, most often functions are defined only by tabulated data, or the values of y
for specified values of x can be found experimentally. Also in some cases, it is not possible to find
the derivative of a function by analytical method. In such cases, the analytical process of
differentiation breaks down and some numerical process have to be invented. The process of
calculating the derivatives of a function by means of a set of given values of that function is called
numerical differentiation. This process consists in replacing a complicated or an unknown
function by an interpolation polynomial and then differentiating this polynomial as many times as
desired.

Figure 1. Graphical depiction of (a) forward, (b) backward, and (c) centered finite-divided-difference
approximations of the first derivative.

Forward Difference Formula:
All numerical differentiation are done by expansion of Taylor series

𝑓𝑓(𝑒𝑒 + ℎ) = 𝑓𝑓(𝑒𝑒) + 𝑓𝑓′(𝑒𝑒)ℎ +
𝑓𝑓′′(𝑒𝑒)ℎ2

2
+
𝑓𝑓′′′(𝑒𝑒)ℎ3

6
+ ⋯… … … … … … … … … … (1)

From (1)

𝑓𝑓′(𝑒𝑒) =
𝑓𝑓(𝑒𝑒 + ℎ) − 𝑓𝑓(𝑒𝑒)

ℎ
+ 𝑂𝑂(ℎ) … … … … … . (2)

 Page 3 of 5: Exp. 6

Where, O(h) is the truncation error, which consists of terms containing h and higher order terms of
h. It is called forward because we are taking a point ahead of x.

Exercise 1. Given f(x) =ex, find f ′(1) using h=10-1, 10-2,,,, upto 10-10. Find out the error in eachcase
by comparing the calculated value with exact value.
Central Difference Formula (of order O (h2)):

𝑓𝑓(𝑒𝑒 + ℎ) = 𝑓𝑓(𝑒𝑒) + 𝑓𝑓′(𝑒𝑒)ℎ +
𝑓𝑓′′(𝑒𝑒)ℎ2

2
+
𝑓𝑓′′′(𝑐𝑐1)ℎ3

6
+ ⋯… … … … … … … (3)

𝑓𝑓(𝑒𝑒 − ℎ) = 𝑓𝑓(𝑒𝑒) − 𝑓𝑓′(𝑒𝑒)ℎ +
𝑓𝑓′′(𝑒𝑒)ℎ2

2
−
𝑓𝑓′′′(𝑐𝑐2)ℎ3

6
+ ⋯… … … … … … … (4)

Using (3) and (4)

𝑓𝑓′(𝑒𝑒) = 𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥−ℎ)
2ℎ

+ 𝑂𝑂(ℎ2) … … … … … … … …(5)

Where, O(h2) is the truncation error, which consists of terms containing h2 and higher order terms
of h.

Exercise 2. Given f(x) =ex, find f ′(1) using h=10-1, 10-2,,,, up to 10-10. Use equation (5). Find out
the error in each case by comparing the calculated value with exact value.

Central Difference Formula (of order O (h4)):

Using Taylor series expansion it can be shown that

𝑓𝑓′(𝑒𝑒) =
−𝑓𝑓(𝑒𝑒 + 2ℎ) + 8𝑓𝑓(𝑒𝑒 + ℎ) − 8𝑓𝑓(𝑒𝑒 − ℎ) + 𝑓𝑓(𝑒𝑒 − 2ℎ)

12ℎ + 𝑂𝑂(ℎ4) … … … … … … … … (6)

Here the truncation error reduces to h4

Exercise 3. Given f(x) =sin (cos (1/x)) evaluate 𝑓𝑓′(1/√2) . Start with h =1 and reduce h to 1/10 o
previous step in each step. If Dn+1 is the result in (n+1) th step and Dn is the result in nth step then
continue iteration until |Dn+1-Dn|>=|Dn-Dn-1| or |Dn-Dn-1| <tolerance. Use equation (6) for finding D.

Richardson’s Extrapolation:

So far, we've explored two methods to enhance derivative estimates using finite divided differences:
(1) reducing the step size, and (2) applying a higher-order formula that incorporates additional points.
A third method, known as Richardson extrapolation, improves accuracy by combining two derivative
estimates to generate a more precise result. We have seen that

𝑓𝑓′(𝑒𝑒) =
𝑓𝑓(𝑒𝑒 + ℎ) − 𝑓𝑓(𝑒𝑒 − ℎ)

2ℎ
+ 𝑂𝑂(ℎ2)

Which can be written as

 Page 4 of 5: Exp. 6

𝑓𝑓′(𝑒𝑒) ≈
𝑓𝑓(𝑒𝑒 + ℎ) − 𝑓𝑓(𝑒𝑒 − ℎ)

2ℎ
+ 𝐶𝐶ℎ2

 Or, 𝑓𝑓′(𝑒𝑒) ≈ 𝐷𝐷0(ℎ) + 𝐶𝐶ℎ2 … … … … … … … … (7)

If step size is converted to 2h

𝑓𝑓′(𝑒𝑒) ≈ 𝐷𝐷0(2ℎ) + 4𝐶𝐶ℎ2 … … … … … … … … (8)

Using (7) and (8)

𝑓𝑓′(𝑒𝑒) ≈
4𝐷𝐷0(ℎ) − 𝐷𝐷0(2ℎ)

3
=
−𝑓𝑓2 + 8𝑓𝑓1 − 8𝑓𝑓−1 + 𝑓𝑓−2

12ℎ
… … … … … … … … (9)

Equation (9) is same as equation (6)
The method of obtaining a formula for f ′(x) of higher order from a formula of
lower order is called extrapolation. The general formula for Richardson’s extrapolation is

𝑓𝑓′(𝑒𝑒) = 𝐷𝐷𝑘𝑘(ℎ) + 𝑂𝑂(ℎ2𝑘𝑘+2) =
4𝑘𝑘𝐷𝐷𝑘𝑘−1(ℎ) − 𝐷𝐷𝑘𝑘−1(2ℎ)

4𝑘𝑘 − 1
+ 𝑂𝑂(ℎ2𝑘𝑘+2) … … … … . . (10)

Algorithm for Richardson Approximation:
% Input:
% - f(x) : The input function
% - delta : Tolerance for absolute error
% - toler : Tolerance for relative error
%
% Output:
% - D : Matrix of approximate derivatives
% - err : Final absolute error
% - relerr : Final relative error
% - n : Index of the best approximation
1. err ← 1
2. relerr ← 1
3. h ← 1
4. j ← 1
5. D(1,1) ← (f(x + h) − f(x − h)) / (2h)
6. While relerr > toler AND err > delta AND j < 12 do
7. h ← h / 2
8. D(j+1, 1) ← (f(x + h) − f(x − h)) / (2h)
9. For k from 1 to j do
10. D(j+1, k+1) ← D(j+1, k) + (D(j+1, k) − D(j, k)) / (4^k − 1)

 End For
11. err ← |D(j+1, j+1) − D(j, j)|
12. relerr ← (2 × err) / (|D(j+1, j+1)| + |D(j, j)| + ε)
13. j ← j + 1

 Page 5 of 5: Exp. 6

End While

Exercise 4. Given f(x) = sin (x3 − 7x2 + 6x + 8) evaluate 𝑓𝑓′ �1−√5
2
�. Use Richardson's

extrapolation. Approximation should be accurate up to 13 decimal places.

Revised by,
Md. Samrat
(April 2025)

Page 1 of 5: Exp. 7

Bangladesh University of Engineering & Technology
Department of Electrical & Electronic Engineering

EEE 212: Numerical Technique Laboratory

Experiment 7: Numerical Integration

Objectives:

 Implement composite trapezoidal, Simpson’s 1/3, and Simpson’s 3/8 rules.
 Develop adaptive integration schemes based on error tolerance.
 Compare numerical results with exact integrals using both tabulated data and functions.

Introduction:
There are two cases in which engineers and scientists may require the help of numerical
integration technique. (1) Where experimental data is obtained whose integral may be required
and (2) where a closed form formula for integrating a function using calculus is difficult or so
complicated as to be almost useless. For example the integral

Φ(𝑡𝑡) = �  
𝑥𝑥

0
 
𝑡𝑡3

𝑒𝑒𝑡𝑡 − 1
𝑑𝑑𝑡𝑡

Since there is no analytic expression for Φ(𝑒𝑒) , numerical integration technique must be
used to obtain approximate values of Φ(𝑒𝑒) .
Formulae for numerical integration called quadrature are based on fitting a polynomial
through a specified set of points (experimental data or function values of the complicated
function) and integrating (finding the area under the fitted polynomial) this
approximating function. Any one of the interpolation polynomials studied earlier may be
used.

Some of the Techniques for Numerical Integration
Trapezoidal Rule
Assume that the values of a function f (x) are given at x1, x1+h, x1+2h ……x1+nh and it is
required to find the integral of f (x) between x1 and x1+nh. The simplest technique to use would
be to fit straight lines through f(x1), f(x1+h) ……and to determine the area under this
approximating function as shown in Fig 7.1.

Fig. 7.1 Illustrating trapezoidal rule

Page 2 of 5: Exp. 7

For the first two points we can write:

�  
𝑥𝑥1+ℎ

𝑥𝑥1
𝑓𝑓(𝑒𝑒)𝑑𝑑𝑒𝑒 =

ℎ
2

(𝑓𝑓1 + 𝑓𝑓2)

This is called first-degree Newton-Cotes formula.

From the above figure it is evident that the result of integration between 𝑒𝑒𝐼𝐼 and 𝑒𝑒𝐼𝐼 + 𝑛𝑛ℎ is nothing but
the sum of areas of some trapezoids. In equation form this can be written as:

�  
𝑥𝑥1+𝑛𝑛ℎ

𝑥𝑥1
𝑓𝑓(𝑒𝑒)𝑑𝑑𝑒𝑒 = � 

𝑛𝑛

𝑖𝑖=1

(𝑓𝑓𝑖𝑖 + 𝑓𝑓𝑖𝑖+1)
2

ℎ

The above integration formula is known as Composite Trapezoidal rule.
The composite trapezoidal rule can explicitly be written as:

�  
𝑥𝑥1+𝑛𝑛ℎ

𝑥𝑥1
𝑓𝑓(𝑒𝑒)𝑑𝑑𝑒𝑒 =

ℎ
2

(𝑓𝑓1 + 2𝑓𝑓2 + 2𝑓𝑓3 + ⋯ . . .2𝑓𝑓𝑛𝑛 + 𝑓𝑓𝑛𝑛+1)

Simpson's 1/3 Rule
This is based on approximating the function 𝑓𝑓(𝑒𝑒) by fitting quadratics through sets of three points. For
only three points it can be written as:

�  
𝑥𝑥1+2ℎ

𝑥𝑥1
𝑓𝑓(𝑒𝑒)𝑑𝑑𝑒𝑒 =

ℎ
3

(𝑓𝑓1 + 4𝑓𝑓2 + 𝑓𝑓3)

This is called second-degree Newton-Cotes formula.
It is evident that the result of integration between 𝑒𝑒1 and 𝑒𝑒1 + 𝑛𝑛ℎ can be written as

�  
𝑥𝑥1+𝑛𝑛ℎ

𝑥𝑥1
 𝑓𝑓(𝑒𝑒)𝑑𝑑𝑒𝑒 = �  

𝑖𝑖=1,3,5,…,𝑛𝑛−1

 
ℎ
3

(𝑓𝑓𝑖𝑖 + 4𝑓𝑓𝑖𝑖+1 + 𝑓𝑓𝑖𝑖+2)

 =
ℎ
3

(𝑓𝑓1 + 4𝑓𝑓2 + 2𝑓𝑓3 + 4𝑓𝑓4 + 2𝑓𝑓5 + 4𝑓𝑓6 + ⋯4𝑓𝑓𝑛𝑛 + 𝑓𝑓𝑛𝑛+1)

In using the above formula it is implied that f is known at an odd number of points (n+1 is odd,
where n is the no. of subintervals).

Simpson’s 3/8 Rule
This is based on approximating the function f(x) by fitting cubic interpolating polynomial through
sets of four points. For only four points it can be written as:

�  
𝑥𝑥1+3ℎ

𝑥𝑥1
 𝑓𝑓(𝑒𝑒)𝑑𝑑𝑒𝑒 =

3ℎ
8

(𝑓𝑓1 + 3𝑓𝑓2 + 3𝑓𝑓3 + 𝑓𝑓4)

Page 3 of 5: Exp. 7

This is called third-degree Newton-Cotes formula. It is evident that the result of integration between 𝑒𝑒1
and 𝑒𝑒𝐼𝐼 + 𝑛𝑛ℎ can be written as

�  
𝑥𝑥1+𝑛𝑛ℎ

𝑥𝑥1
 𝑓𝑓(𝑒𝑒)𝑑𝑑𝑒𝑒 = �  

𝑖𝑖=1,4,7,…,𝑛𝑛−2

 
ℎ
3

(𝑓𝑓𝑖𝑖 + 3𝑓𝑓𝑖𝑖+1 + 3𝑓𝑓𝑖𝑖+2 + 𝑓𝑓𝑖𝑖+3)

 =
3ℎ
8

(𝑓𝑓1 + 3𝑓𝑓2 + 3𝑓𝑓3 + 2𝑓𝑓4 + 3𝑓𝑓5 + 3𝑓𝑓6 + 2𝑓𝑓7 + ⋯+ 2𝑓𝑓𝑛𝑛−2 + 3𝑓𝑓𝑛𝑛−1 + 3𝑓𝑓𝑛𝑛 + 𝑓𝑓𝑛𝑛+1)

In using the above formula it is implied that 𝑓𝑓 is known at (𝑛𝑛 + 1) points where 𝐧𝐧 is divisible by 3 .
An algorithm for integrating a tabulated function using composite trapezoidal rule:
Remarks: 𝑓𝑓1, 𝑓𝑓2, … … … ,𝑓𝑓𝑛𝑛+1 are the tabulated values at 𝑒𝑒1, 𝑒𝑒𝑙𝑙+ℎ, … … … 𝑒𝑒1+𝑛𝑛ℎ (𝑛𝑛 + 1 points)

1. Read h
2. for i = 1 to n + 1 Read f endfor

3. sum ← (f1 + fn+1) / 2

4. for j = 2 to n do
5. sum ← sum + f j

endfor
6. int egral ← h . sum
7. write int egral stop

Exercise 1. Integrate the function tabulated in Table 7.1 over the interval from x=1.6 to x=3.8
using composite trapezoidal rule with (a) h=0.2, (b) h=0.4 and (c) h=0.6

Table 7.1
X f(x) X f(x)

1.6 4.953 2.8 16.445
1.8 6.050 3.0 20.086
2.0 7.389 3.2 24.533
2.2 9.025 3.4 29.964
2.4 11.023 3.6 36.598
2.6 13.468 3.8 44.701

The data in Table 7.1 are for f (x) = ex . Find the true value of the integral and compare this
with those found in (a), (b) and (c).
Exercise 2.

(a) Integrate the function tabulated in Table 7.1 over the interval from x=1.6 to x=3.6
using Simpson’s composite 1/3 rule.

(b) Integrate the function tabulated in Table 7.1 over the interval from x=1.6 to x=3.4
using Simpson’s composite 3/8 rule.

An algorithm for integrating a known function using composite trapezoidal rule:
If f(x) is given as a closed form function such as f (x) = e− x cos x and we are asked to integrate it
from x1 to x2, we should decide first what h should be. Depending on the value of h we will have
to evaluate the value of f(x) inside the program for x=x1+nh where n=0,1, 2,….n and n = (x2 − x1
) / h .

Page 4 of 5: Exp. 7

o = New points
× = Old points

1. h ← (x₂ − x₁) / n
2. x ← x₁
3. sum ← f(x)
4. for i = 2 to n do
5. x ← x + h
6. sum ← sum + 2 * f(x)

endfor
7. x ← x₂
8. sum ← sum + f(x)
9. integral ← (h / 2) * sum
10. write integral

stop

Exercise 3.

(a) Find (approximately) each integral given below using the composite trapezoidal
rule with n = 12 .
(i) ∫  1

−1 (1 + 𝑒𝑒2)−1𝑑𝑑𝑒𝑒 (ii) ∫  40 𝑒𝑒2𝑒𝑒−𝑥𝑥𝑑𝑑𝑒𝑒
(b) Find (approximately) each integral given above using the Simpson’s composite 1/3

and 3/8 rules with n = 12 .

Adaptive Integration
When f(x) is a known function we can choose the value for h arbitrarily. The problem is that we
do not know a priori what value to choose for h to attain a desired accuracy (for example, for an
arbitrary h sharp picks of the function might be missed). To overcome this problem, we can start
with two subintervals, h = h1 = (x2 − x1) / 2 and apply either trapezoidal or Simpson’s
1/3 rule. Then we let h2 = h1 /2 and apply the formula again, now with four subintervals and
the results are compared. If the new value is sufficiently close, the process is terminated. If the 2nd
result is not close enough to the first, h is halved again and the procedure is repeated. This is
continued until the last result is close enough to its predecessor. This form of numerical
integration is termed as adaptive integration.
The no. of computations can be reduced because when h is halved, all of the old points at which
the function was evaluated appear in the new computation and thus repeating evaluation can be
avoided. This is illustrated below.

k=1

k=2

k=3

k=4

Page 5 of 5: Exp. 7

An algorithm for adaptive integration of a known function using trapezoidal rule:
1. Read x₁, x₂, e // e is the allowed relative error
2. h ← x₂ − x₁
3. S ← (f(x₁) + f(x₂)) / 2
4. I₁ ← h * S // Initial integral estimate
5. i ← 1

Repeat
6. x ← x₁ + h / 2 // First new midpoint
7. for j = 1 to i do
8. S1 ← S1 + f(x)
9. x ← x + h // Move to next midpoint

 endfor
10. i ← 2i
11. h ← h / 2
12. I₀ ← I₁ // Save previous integral
13. I₁ ← h * S1 // New integral with refined h
14. until |I₁ − I₀| ≤ e * |I₁|
15. Write I₁, h, i

Stop

Exercise 4. Evaluate the integral of 𝑒𝑒𝑒𝑒−2𝑥𝑥2 between 𝑒𝑒 = 0 and 𝑒𝑒 = 2 using a tolerance value
sufficiently small as to get an answer within 0.1% of the true answer, 0.249916 .
Exercise 5. Evaluate the integral of sin2 (16𝑒𝑒) between 𝑒𝑒 = 0 and 𝑒𝑒 = 𝜋𝜋/2. Why the result is
erroneous? How can this be solved? (The correct result is 𝜋𝜋/4)

Revised by,
Md. Samrat
(April 2025)

Page 1 of 7: Exp. 8

Bangladesh University of Engineering & Technology
Department of Electrical & Electronic Engineering

EEE 212: Numerical Technique Laboratory

Experiment 8: Solutions to Non-linear Equations

Objectives:

 Apply iterative root-finding methods: bisection, false position, Newton-Raphson, and the
secant method.

 Examine convergence criteria and analyze iteration errors.

Introduction:

Bisection method:

The Bisection method is one of the simplest procedures for finding root of a function in a given
interval.
The procedure is straightforward. The approximate location of the root is first determined by finding
two values that bracket the root (a root is bracketed or enclosed if the function changes sign at the
endpoints). Based on these a third value is calculated which is closer to the root than the original two
values. A check is made to see if the new value is a root. Otherwise, a new pair of brackets is
generated from the three values, and the procedure is repeated.

Consider a function 𝑑𝑑(𝑒𝑒) and let there be two values of 𝑒𝑒, 𝑒𝑒low and 𝑒𝑒𝑢𝑢𝑢𝑢�𝑒𝑒𝑢𝑢𝑢𝑢 > 𝑒𝑒low �, bracketing a
root of 𝑑𝑑(𝑒𝑒).

Steps:

1. The first step is to use the brackets 𝑒𝑒low and 𝑒𝑒𝑢𝑢𝑢𝑢 to generate a third value that is closer to the root.
This new point is calculated as the mid-point between 𝑒𝑒low and, namely 𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚 = 𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙+𝑥𝑥𝑢𝑢𝑢𝑢

2
. The

Page 2 of 7: Exp. 8

method therefore gets its name from this bisecting of two values. It is also known as interval
halving method.

2. Test whether 𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚 is a root of 𝑑𝑑(𝑒𝑒) by evaluating the function at 𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚.

3. If 𝑒𝑒mid is not a root,

a. If 𝑑𝑑(𝑒𝑒low) and 𝑑𝑑(𝑒𝑒mid) have opposite signs i.e. 𝑑𝑑(𝑒𝑒low) ⋅ 𝑑𝑑(𝑒𝑒mid) < 0, root is in left half of
interval.

b. If 𝑑𝑑(𝑒𝑒low) and 𝑑𝑑(𝑒𝑒mid) have same signs i.e. 𝑑𝑑(𝑒𝑒low) ⋅ 𝑑𝑑(𝑒𝑒mid) > 0, root is in right half of interval.

4. Continue subdividing until interval width has been reduced to a size ≤ 𝜀𝜀 where 𝜀𝜀 = selected 𝑒𝑒
tolerance.

Algorithm: Bisection Method:
1. Input xLower, xUpper, xTol
2. yLower ← f(xLower)
3. xMid ← (xLower + xUpper) / 2.0
4. yMid ← f(xMid)
5. iters ← 0
6. While ((xUpper - xLower) / 2.0 > xTol)
7. iters ← iters + 1
8. If (yLower * yMid > 0) Then
9. xLower ← xMid
10. Else
11. xUpper ← xMid
 End If
12. xMid ← (xLower + xUpper) / 2.0
13. yMid ← f(xMid)
 EndofWhile
14. Output xMid, yMid, iters // xMid is the root approximation
 Stop

Exercise 1. Find the real root of the equation 𝑑𝑑(𝑒𝑒) = 𝑒𝑒5 + 𝑒𝑒 + 1 using Bisection Method. 𝑒𝑒low =
−1, 𝑒𝑒𝑢𝑢𝑢𝑢 = 0 and 𝜀𝜀 = selected𝑒𝑒 tolerance = 10−4.

Note: For a given 𝑒𝑒 tolerance (epsilon), we can calculate the number of iterations directly. The number
of divisions of the original interval is the smallest value of 𝑛𝑛 that satisfies: 𝑥𝑥𝑢𝑢𝑢𝑢−𝑥𝑥low

2𝑛𝑛
⟨𝜀𝜀 or 2𝑛𝑛⟩ 𝑥𝑥𝑢𝑢𝑢𝑢−𝑥𝑥low

𝜀𝜀

Thus 𝑛𝑛 > log 2 �𝑥𝑥𝑢𝑢𝑢𝑢−𝑥𝑥low

𝜀𝜀
�

In our previous example, 𝑒𝑒low = −1, 𝑒𝑒𝑢𝑢𝑢𝑢 = 0 and 𝜀𝜀 = selecte d𝑒𝑒 tolerance = 10−4. So we have 𝑛𝑛 =
14.

Page 3 of 7: Exp. 8

False-Position Method (Regula Falsi)

A shortcoming of the bisection method is that, in dividing the interval from 𝑒𝑒low to 𝑒𝑒𝑢𝑢𝑢𝑢 into equal
halves, no account is taken of the magnitude of 𝑓𝑓(𝑒𝑒𝑙𝑙𝑜𝑜𝑙𝑙) and 𝑓𝑓�𝑒𝑒𝑢𝑢𝑢𝑢�. For example, if 𝑓𝑓(𝑒𝑒low) is much
closer to zero than 𝑓𝑓�𝑒𝑒𝑢𝑢𝑢𝑢�, it is likely that the root is closer to 𝑒𝑒low than to 𝑒𝑒𝑢𝑢𝑢𝑢. An alternative method
that exploits this graphical insight is to join 𝑓𝑓(𝑒𝑒low) and 𝑓𝑓�𝑒𝑒𝑢𝑢𝑢𝑢� by a straight line. The intersection of
this line with the 𝑒𝑒 axis represents an improved estimate of the root. The fact that the replacement of
the curve by a straight line gives the false position of the root is the origin of the name, method of false
position, or in Latin, Regula Falsi. It is also called the Linear Interpolation Method.

Using similar triangles, the intersection of the straight line with the x axis can be estimated as

𝑓𝑓(𝑒𝑒low)
𝑒𝑒 − 𝑒𝑒low

=
𝑓𝑓�𝑒𝑒𝑢𝑢𝑢𝑢�
𝑒𝑒 − 𝑒𝑒𝑢𝑢𝑢𝑢

That is 𝑒𝑒 = 𝑒𝑒𝑢𝑢𝑢𝑢 −
𝑓𝑓�𝑥𝑥𝑢𝑢𝑢𝑢��𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙−𝑥𝑥𝑢𝑢𝑢𝑢�
𝑓𝑓(𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙)−𝑓𝑓�𝑥𝑥𝑢𝑢𝑢𝑢�

This is the False Position formulae. The value of 𝑒𝑒 then replaces whichever of the two initial guesses,
𝑒𝑒low or 𝑒𝑒𝑢𝑢𝑢𝑢, yields a function value with the same sign as 𝑓𝑓(𝑒𝑒). In this way, the values of 𝑒𝑒𝑙𝑙𝑜𝑜𝑙𝑙 and 𝑒𝑒𝑢𝑢𝑢𝑢
always bracket the true root. The process is repeated until the root is estimated adequately.

Exercise 2. Find the root of the equation 𝑑𝑑(𝑒𝑒) = 𝑒𝑒5 + 𝑒𝑒 + 1 using False Position Method. 𝑒𝑒low =
−1, 𝑒𝑒𝑢𝑢𝑢𝑢 = 0 and 𝜀𝜀 = selected 𝑒𝑒 tolerance = 10−4. (Develop the algorithm by yourself. It is very
similar to Bisection Method).

Newton Raphson Method:

If 𝑓𝑓(𝑒𝑒),𝑓𝑓′(𝑒𝑒) and 𝑓𝑓′′(𝑒𝑒) are continuous near a root 𝑒𝑒, then this extra information regarding the nature
of 𝑓𝑓(𝑒𝑒) can be used to develop algorithms that will produce sequences {𝑒𝑒𝑘𝑘} that converge faster to 𝑒𝑒
than either the bisection or false position method. The Newton-Raphson (or simply Newton's) method
is one of the most useful and best-known algorithms that relies on the continuity of 𝑓𝑓′(𝑒𝑒) and 𝑓𝑓′′(𝑒𝑒).

Page 4 of 7: Exp. 8

f (x)

Slope = f ′(xk)

f (xk)

0 xk +1 xk x

The attempt is to locate root by repeatedly approximating 𝑓𝑓(𝑒𝑒) with a linear function at each step. If
the initial guess at the root is 𝑒𝑒𝑘𝑘, a tangent can be extended from the point [𝑒𝑒𝑘𝑘, 𝑓𝑓(𝑒𝑒𝑘𝑘)]. The point
where this tangent crosses the 𝑒𝑒 axis usually represents an improved estimate of the root.

The Newton-Raphson method can be derived on the basis of this geometrical interpretation. As in the
figure, the first derivative at x is equivalent to the slope:

𝑓𝑓′(𝑒𝑒𝑘𝑘) =
𝑓𝑓(𝑒𝑒𝑘𝑘) − 0
𝑒𝑒𝑘𝑘 − 𝑒𝑒𝑘𝑘+1

which can be rearranged to yield

𝑒𝑒𝑘𝑘+1 = 𝑒𝑒𝑘𝑘 −
𝑓𝑓(𝑒𝑒𝑘𝑘)
𝑓𝑓′(𝑒𝑒𝑘𝑘)

which is called the Newton Raphson formulae.

Page 5 of 7: Exp. 8

So the Newton-Raphson Algorithm actually consists of the following steps:
1. Start with an initial guess 𝑒𝑒0 and an 𝑒𝑒-tolerance 𝜀𝜀.

2. Calculate 𝑒𝑒𝑘𝑘+1 = 𝑒𝑒𝑘𝑘 −
𝑓𝑓(𝑥𝑥𝑘𝑘)
𝑓𝑓′(𝑥𝑥𝑘𝑘) 𝑘𝑘 = 0,1,2, …

Algorithm - Newton’s Method
1. Input x0, xTol
2. iters ← 1
3. dx ← -f(x0) / fDeriv(x0)
4. root ← x0 + dx
5. While (Abs(dx) > xTol)
6. dx ← -f(root) / fDeriv(root)
7. root ← root + dx
8. iters ← iters + 1

End of while
9. Output root, iters

Stop

Exercise 3. Use the Newton Raphson method to estimate the root of f (x) = e− x − 1, employing an
initial guess of x0 = 0. The tolerance is = 10−8 .

The Secant Method:

The Newton-Raphson algorithm requires two functions evaluations per iteration, 𝑓𝑓(𝑒𝑒𝑘𝑘) and𝑓𝑓′(𝑒𝑒𝑘𝑘) .
Historically, the calculation of a derivative could involve considerable effort. Moreover, many
functions have non-elementary forms (integrals, sums etc.), and it is desirable to have a method for
finding a root that does not depend on the computation of a derivative. The secant method does not
need a formula for the derivative and it can be coded so that only one new function evaluation is
required per iteration.
The formula for the secant method is the same one that was used in the Regula Falsi method, except
that the logical decisions regarding how to define each succeeding term are different.

In the Secant method, the derivative can be approximated by a backward finite divided difference, as
in the figure,

𝑓𝑓′(𝑒𝑒𝑘𝑘) ≅
𝑓𝑓(𝑒𝑒𝑘𝑘−1) − 𝑓𝑓(𝑒𝑒𝑘𝑘)

𝑒𝑒𝑘𝑘−1 − 𝑒𝑒𝑘𝑘

Using Newton-Raphson method,

𝑒𝑒𝑘𝑘+1 = 𝑒𝑒𝑘𝑘 −
𝑓𝑓(𝑒𝑒𝑘𝑘)
𝑓𝑓′(𝑒𝑒𝑘𝑘)

Substituting 𝑓𝑓′(𝑒𝑒𝑘𝑘),

Page 6 of 7: Exp. 8

𝑒𝑒𝑘𝑘+1 = 𝑒𝑒𝑘𝑘 −
𝑓𝑓(𝑒𝑒𝑘𝑘)(𝑒𝑒𝑘𝑘−1 − 𝑒𝑒𝑘𝑘)
𝑓𝑓(𝑒𝑒𝑘𝑘−1) − 𝑓𝑓(𝑒𝑒𝑘𝑘)

Notice that the approach requires initial estimates of x

.

Algorithm - Secant Method
1. Input xₖ, xₖ₋₁, xTol, maxIter
2. iters ← 1
3. yₖ ← f(xₖ)
4. yₖ₋₁ ← f(xₖ₋₁)
5. root ← (xₖ₋₁·yₖ − xₖ·yₖ₋₁) / (yₖ − yₖ₋₁)
6. yₖ₊₁ ← f(root)
7. While |root − xₖ| > xTol and iters < maxIter do
8. xₖ₋₁ ← xₖ
9. yₖ₋₁ ← yₖ
10. xₖ ← root
11. yₖ ← yₖ₊₁
12. root ← (xₖ₋₁·yₖ − xₖ·yₖ₋₁) / (yₖ − yₖ₋₁)
13. yₖ₊₁ ← f(root)

f (x)

f (xk)

f (xk −1)

xk −1 xk
x

Page 7 of 7: Exp. 8

14. iters ← iters + 1
EndofWhile

15. Output: root, yₖ₊₁, iters

Exercise 4. Find the root of the equation and 1 f (x) = 3x + sin(x) − ex , starting values are 0. The
tolerance limit is 0.0000001.

Revised by,
Md. Samrat
(April 2025)

	EEE 212 Lab Exp 1-3
	EEE 212 Lab (Revised)
	Experiment 3: Interpolation
	Types of interpolation:
	Bangladesh University of Engineering & Technology
	Department of Electrical & Electronic Engineering

	EEE 212: Numerical Technique Laboratory
	Experiment 4: Curve Fitting
	Reference Books:
	Bangladesh University of Engineering & Technology
	Department of Electrical & Electronic Engineering

	EEE 212: Numerical Technique Laboratory
	Experiment 5: Solution of Simultaneous Linear Algebraic Equations
	Existence of solution
	Matrices
	Finding Solution
	Bangladesh University of Engineering & Technology
	Department of Electrical & Electronic Engineering

	EEE 212: Numerical Technique Laboratory
	Experiment 5: Numerical Differentiation
	Forward Difference Formula:
	Central Difference Formula (of order O (h2)):
	Central Difference Formula (of order O (h4)):
	Richardson’s Extrapolation:
	Bangladesh University of Engineering & Technology
	Department of Electrical & Electronic Engineering

	EEE 212: Numerical Technique Laboratory
	Experiment 7: Numerical Integration
	Bangladesh University of Engineering & Technology
	Department of Electrical & Electronic Engineering

	EEE 212: Numerical Technique Laboratory
	Experiment 8: Solutions to Non-linear Equations
	Algorithm: Bisection Method:
	1. Input xLower, xUpper, xTol
	2. yLower ← f(xLower)
	3. xMid ← (xLower + xUpper) / 2.0
	4. yMid ← f(xMid)
	5. iters ← 0
	6. While ((xUpper - xLower) / 2.0 > xTol)
	7. iters ← iters + 1
	1. If (yLower * yMid > 0) Then
	8.
	9. xLower ← xMid
	1. Else
	10.
	1. xUpper ← xMid End If
	11.
	12. xMid ← (xLower + xUpper) / 2.0
	13. yMid ← f(xMid)
	EndofWhile
	14. Output xMid, yMid, iters // xMid is the root approximation
	Stop
	False-Position Method (Regula Falsi)
	Newton Raphson Method:
	So the Newton-Raphson Algorithm actually consists of the following steps:

	Algorithm - Newton’s Method
	1. Input x0, xTol
	2. iters ← 1
	3. dx ← -f(x0) / fDeriv(x0)
	4. root ← x0 + dx
	5. While (Abs(dx) > xTol)
	6. dx ← -f(root) / fDeriv(root)
	7. root ← root + dx
	8. iters ← iters + 1
	End of while
	9. Output root, iters
	Stop
	The Secant Method:

